FSS

2022 Structural Stability and Safety Factor Assessment

For Compliance with the EPA Coal Combustion Residuals (CCR) Rule 40 CFR §257.73(d) 40 CFR §257.73(e)

Former B.C. Cobb Power Plant Ponds 0-8 and Bottom Ash Pond

August 17, 2022

Prepared for: Muskegon Environmental Redevelopment Group, LLC (MERG) Muskegon, Michigan

Prepared by: HDR MICHIGAN, Inc. 5405 Data Court Ann Arbor, Michigan 48108

Contents

1	Introd	duction and Purpose	1
	1.1	Site Location	1
	1.2	Site Description	2
	1.3	Previous Assessments and Inspections	3
2	Struc	tural Stability Assessment - 40 CFR §257.73(d)	4
	2.1	§257.73 (d)(1)(i) - Foundations and Abutments	5
	2.2	§257.73 (d)(1)(ii) - Slope Protection	6
	2.3	§257.73 (d)(1)(iii) - Embankment Compaction	7
	2.4	§257.73 (d)(1)(iv) - Embankment Vegetation	7
	2.5	§257.73 (d)(1)(v) – Spillway	7
	2.6	§257.73 (d)(1)(vi) - Hydraulic Structures	8
	2.7	§257.73 (d)(1)(vii) - Downstream Slope Drawdown	9
	2.8	§257.73 (d)(2) - Structural Stability Deficiencies	9
3	Safet	ty Factor Assessment - 40 CFR §257.73(e)	10
	3.1	Stability Analysis Criteria	10
	3.2	Methodology	10
	3.3	Critical Cross Section Geometry	11
	3.4	Credible Load Cases	12
	3.5	Pond Elevation and Phreatic Conditions	13
	3.6	Material Properties	13
	3.7	Vehicle Loading	14
	3.8	Assessment of Liquefaction Potential	14
	3.9	Stability Analysis Results and Conclusions	17
4	Certi	fication	19
5	Refe	rences	20
6	Attac	hments	21

Tables

Table 1-1. List of Previous Assessments and Inspections	4
Table 2-1. List of Structural Stability Assessment Items	5
Table 3-1. Loading Conditions and Minimum Required Factors of Safety	13
Table 3-2. Summary of Material Properties Used in Analysis	14
Table 3-3. Summary of Stability Analyses Results and Factors of Safety	18

Figures

Figure 1. Site Vicinity Map	2
Figure 2. Aerial Image of Impoundment During Excavation	3
Figure 3. Approximate Boring Locations	6
Figure 4. Location of Stability Cross-Section	12
Figure 5. Stability Cross Section Geometry and Stratigraphy (phreatic surface for NWSE case)	12

This page is intentionally left blank.

1 Introduction and Purpose

HDR MICHIGAN, Inc. (HDR) has prepared this 2022 Structural Stability and Safety Factor Assessment Report for Ponds 0-8 and Bottom Ash Pond at the Former B.C. Cobb Power Plant (B.C. Cobb) following the requirements of the Federal Coal Combustion Residuals (CCR) Rule to demonstrate compliance of the Former B.C. Cobb Power Plant in Muskegon, Michigan.

On April 17, 2015, the United States Environmental Protection Agency (EPA) issued the final rule (Ref. [5]) for disposal of Coal Combustion Residuals (CCR) under Subtitle D of the Resource Conservation and Recovery Act (RCRA). CCR Rule 40 CFR §257.73(b) requires that owners or operators of an existing CCR surface impoundment that either 1) has a height of five feet or more and a storage volume of 20 acre-feet or more; or 2) has a height of 20 feet or more perform periodic structural stability assessments (40 CFR §257.73(d)) and periodic safety factor assessments (40 CFR §257.73(e)).

The CCR Final Rule requires that initial and periodic structural stability assessments be conducted in accordance with Section §257.73(d). Section §257.73(e) requires that initial and periodic safety factor assessments be conducted to verify that the stability of the most critical section of the embankment complies with the required minimum factors of safety for the long-term maximum storage pool, maximum surcharge pool, and seismic load cases. This report presents the periodic structural stability assessment and periodic safety factor assessment for Ponds 0-8 and Bottom Ash Pond.

The Structural Stability and Safety Factor Assessment Report presented herein addresses the specific requirements of 40 CFR §257.73(d) and 40 CFR §257.73(e). This Structural Stability and Safety Factor Assessment Report was prepared by Mr. Bryce Burkett, P.E., and was reviewed in accordance with HDR's internal review policy by Mr. Greg Shafer, P.E., both of HDR. Mr. Burkett is a registered Professional Engineer in the State of Michigan.

1.1 Site Location

B.C. Cobb is a former electrical power generation facility located along North Causeway (M-120) in Muskegon, Michigan which was previously owned by Consumers Energy Company (CEC). The Muskegon Environmental Redevelopment Group, LLC (MERG) acquired the B.C. Cobb property in 2020 and has recently completed excavation by removing CCR material from the ponds as part of pond remediation efforts. The latitude and longitude of B.C. Cobb are approximately 43.254355 N and 86.241224 W. The site is located north of Muskegon, Michigan and south of the intersection of North Causeway (M-120) and the Muskegon River, as shown in the vicinity map, Figure 1.

Figure 1. Site Vicinity Map

1.2 Site Description

B.C. Cobb began operations in the 1940s with five coal-burning units, later converting three of those units to natural gas until operations were ceased by CEC in 2016. The CCR unit, which includes Ponds 0-8 and the Bottom Ash Pond, are National Pollutant Discharge Elimination System (NPDES) treatment units. Figure 3 displays the pond layout at the site. Historically, CCR was deposited in the ponds by utilizing sluicing methods. Bottom ash slurry was directed into the Bottom Ash Pond, with Bottom Ash Pond overflow directed into either Ponds 5 or 6. Fly ash from the power plant was directed into Ponds 7 and 8. The ponded CCR was routed through the remaining ponds in series. Each pond allowed a portion of CCR particles to settle out before the overflow was transferred to the next pond. The overflow from Pond 4 was discharged to the NPDES outfall located on the Discharge Channel which consisted of a 24-inch diameter high density polyethylene (HDPE) pipe. The NPDES outfall was made inactive prior to the 2017 Annual Inspection (Ref. [11]) and reportedly grouted (Ref. [12]). A portion of the NPDES outfall has since been reactivated to provide outflow for treated water during current excavation activities. Additionally, two 18-inch diameter HDPE outflow pipes connected Pond 4 to the Discharge Channel serving as emergency outflow pipes and have been decommissioned. Further details of the outfall structures are as discussed in Section 2.6.

The site is in close proximity to several water bodies. The site is adjacent to the North Branch of the Muskegon River on the West Embankment, and the Veterans Memorial Pond is to the northeast of the North Embankment. The Discharge Channel is adjacent to

the South Embankment and discharges into the North Branch of the Muskegon River. There are no available original construction documents detailing the existing subgrade or embankment information at the site. Based on prior subsurface investigations performed by Golder Associates, Inc. (Golder), the perimeter embankments (collectively referring to the South, West, and North Embankments in this report) are assumed to be constructed with standard earthwork equipment and compacted and/or proof rolled before subsequent lifts based on field geotechnical testing results. The foundation material consists of native sand underlain by silty clay (Ref. [8]).

MERG initiated remediation of the ponds in 2020 by installing a soil-bentonite wall in the South and West embankment adjacent to the Discharge Channel and the North Branch of the Muskegon River, respectively, to promote dewatering activities. Dewatering began in July 2020 to prepare for excavation and removal of waste CCR. Ash removal began in August 2020 and was completed in May 2022. The interior embankments separating the ponds have been excavated and removed, while the perimeter embankments are still in place adjacent to the Discharge Channel and the Muskegon River.

Figure 2 presents an aerial view of the CCR impoundment as of February 2022, displaying the excavated impoundments, as well as the terminology of the embankment sections used in this report.

Figure 2. Aerial Image of Impoundment During Excavation

1.3 Previous Assessments and Inspections

In 2009 and 2012, AECOM performed Ash Dike Risk Assessments for the impoundment system. The previous assessments have been reviewed as part of this study. Additionally, Golder previously performed annual inspections for Ponds 0-8. The Bottom Ash Pond was exempt from the inspection due to the size requirements (Ref. [4]) detailed in CCR Rule 40 CFR 257.73(b). HDR performed annual inspections in 2021 and 2022. The annual inspections were performed in accordance with 40 CFR 257.83(b), including a visual site

inspection and associated reporting. The previous annual reports have been reviewed as part of this study.

Table 1-1 lists the previous reports which provide details of the annual inspections along with the date of the visual inspection.

Document Name	Date of Inspection	Reference
Inspection Report, B.C. Cobb Generating Facility, Ash Dike Risk Assessment, Muskegon, MI	August 28, 2009	Ref. [1]
B.C. Cobb Ash Disposal Area, 2012 Ash Dike Risk Assessment, Final Inspection Report	May 24, 2012	Ref. [3]
B.C. Cobb Ponds 0-8 Annual RCRA CCR Surface Impoundment Inspection Report - January 2016	October 14, 2015	Ref. [7]
B.C. Cobb Generating Facility, Pond 0-8 Structural Stability and Safety Factor Assessment Report	May 19, 2016	Ref. [8]
B.C. Cobb Ponds 0-8 2017 Annual Surface Impoundment Inspection Report	May 17, 2017	Ref. [11]
B.C. Cobb Ponds 0-8 2018 Annual Surface Impoundment Inspection Report	May 9, 2018	Ref. [12]
B.C. Cobb Ponds 0-8 2019 Annual Surface Impoundment Inspection Report	May 21, 2019	Ref. [13]
2021 Annual Inspection Report, Former B.C. Cobb Power Plant Ponds 0-8 and Bottom Ash Pond	March 24, 2021	Ref. [14]
2022 Annual Inspection Report, Former B.C. Cobb Power Plant Ponds 0-8 and Bottom Ash Pond	April 29, 2022	Ref. [15]

Table 1-1. List of Previous Assessments and Inspections

During on-going excavation, MERG performs daily visual inspections of the entire site. The daily inspections are completed by qualified individuals to check for potentially hazardous conditions or structural weakness and the results of the inspections are documented internally on daily inspection forms.

There have been no reports of structural instability of the perimeter embankments during previous inspections.

2

Structural Stability Assessment - 40 CFR §257.73(d)

The documentation requirements in the Structural Stability Assessment for existing CCR surface impoundments are detailed in 40 CFR §257.73: *Structural integrity criteria for existing CCR surface impoundments*. CCR Rule 40 CFR §257.73(d) states that the assessment must, at a minimum, document whether the CCR unit has been designed, constructed, operated, and maintained with the items specified in 40 CFR §257.73(d)(1)(i) through (vii). Table 2-1 summarizes the information from paragraphs 40 CFR

§257.73(d)(1)(i) through (vii), as well as the location of the information presented in this document.

40 CFR Rule	Rule Information	Document Section
§257.73 (d)(1)(i)	Foundations and Abutments	Section 2.1
§257.73 (d)(1)(ii)	Slope Protection	Section 2.2
§257.73 (d)(1)(iii)	Embankment/Dike Compaction	Section 2.3
§257.73 (d)(1)(iv)	Embankment/Dike Vegetation	Section 2.4
§257.73 (d)(1)(v)	Spillway	Section 2.5
§257.73 (d)(1)(vi)	Hydraulic Structures	Section 2.6
§257.73 (d)(1)(vii)	Downstream Slope Drawdown	Section 2.7
§257.73 (d)(2)	Structural Stability Deficiencies	Section 2.8

Table 2-1. List of Structural Stability Assessment Items

2.1 §257.73 (d)(1)(i) - Foundations and Abutments

§257.73 (d)(1)(i): Stable foundations and abutments.

There are no certified construction documents available that provide information on the foundations of the embankments prior to construction.

A subsurface investigation program in 2020 by SME (Ref. [19]) which consisted of six geotechnical borings (SB-2000-1 thru SB-2000-6) performed through the perimeter embankment to assess slope stability during dewatering activities. Other subsurface investigations have been performed, including geoprobes and monitoring well installation, however, there are no geotechnical engineering properties provided from those explorations.

The approximate locations of the borings performed by SME are shown on Figure 3 of SME 2020 (Ref. [19]) and also in Figure 3 below. The boring logs are provided in Attachment 1.

Figure 3. Approximate Boring Locations

The recent boring logs prepared by SME 2020 indicate that the foundation of the perimeter embankments (top of the natural sands encountered in the borings) ranges from approximately EI. 573 to 582 feet. The foundation material is comprised primarily by alternating layers of granular material (i.e., sand, silty sand, sandy silt) from the foundation surface to depths of approximately 25 to 33 feet (approximately EI. 543 to 547 feet) below the original foundation grade where it is underlain by cohesive material consisting of silty clay and lean clay. Traces of silt and gravel, organic clay, peat, and organic matter were observed in the alternating sand and silt layers.

Field density tests performed on the granular material (Standard Penetration Test (SPT) blow counts) indicated that the granular soils ranged from very loose to dense, with blow counts ranging from 0 to 41 blows per foot. Undrained shear strengths obtained from field estimates with a hand penetrometer or torvane in the cohesive soils ranged from 400 psf (soft) to 2,100 psf (stiff). Moisture contents in the cohesive soils ranged between 22 and 79 percent.

Based on subsurface investigation documentation and the history of no observed instability in the foundation materials, the foundation is demonstrating stability and competency. The assessment of abutment stability required by the CCR Final Rule is not applicable, as the embankments are continuous.

2.2 §257.73 (d)(1)(ii) - Slope Protection

§257.73 (d)(1)(ii): Adequate slope protection to protect against surface erosion, wave action, and adverse effects of sudden drawdown.

High winds in Muskegon Lake create large waves which have the potential to reach the exterior slopes of the perimeter embankments. The exterior slopes of the perimeter

embankments are protected from erosion and deterioration by riprap and vegetative cover. The interior slopes are currently graded with soil/CCR surface. At the time of this report, MERG is currently planning to topsoil and seed the interior slopes to provide additional vegetative protection.

The crest of the perimeter embankment is a gravelly/soil surface. Due to the recent excavation activities, the road on the crest of the embankment is graded and maintained.

Weekly inspections performed by MERG monitor the existing slopes for erosion, depressions, cracks, animal burrows, ruts, holes, and seepage. There have been no observations of erosion and/or sloughing along the slopes of the perimeter embankment during the weekly inspections or the 2022 Annual Inspection performed by HDR (Ref. [15]).

The existing slope protection measures for the perimeter embankment have shown and are generally considered adequate to provide protection against surface erosion, wave action, and adverse effects of sudden drawdown. The April 2022 inspection performed by HDR (Ref. [15]) did not identify any other concerns relating to slope protection that required investigation or repair.

2.3 §257.73 (d)(1)(iii) - Embankment Compaction

§257.73 (d)(1)(iii): Dikes mechanically compacted to a density sufficient to withstand the range of loading conditions in the CCR unit.

Construction drawings and specifications, including compaction records, for the perimeter embankment were unavailable for review.

Based on the previous subsurface investigations conducted at the site (Ref. [6] and Ref. [19]), the perimeter embankments were likely constructed to typical embankment standards using earthwork equipment and compacted. The slope stability analyses discussed in Section 3 provides additional details on the stability of the perimeter embankment.

Based on the information above, along with previous inspections and the recent annual inspection, the perimeter embankment is considered sufficient to withstand the range of loading conditions in the CCR unit.

2.4 §257.73 (d)(1)(iv) - Embankment Vegetation

§257.73 (d)(1)(iv): Vegetated slopes of dikes and surrounding areas not to exceed a height of six inches above the slope of the dike, except for slopes which have an alternate form or forms of slope protection.

Vegetation was evident on the exterior slopes of the South and North embankments, in addition to stone riprap on the South Embankment. The vegetation was overgrown and exceeded a height of 6-inches at the time of the HDR April 2022 inspection (Ref. [15]).

2.5 §257.73 (d)(1)(v) – Spillway

§257.73 (d)(1)(v): A single spillway or a combination of spillways configured as specified in paragraph (d)(1)(v)(A) of this section. The combined capacity of all spillways must be designed, constructed, operated, and maintained to adequately

manage flow during and following the peak discharge from the event specified in paragraph (d)(1)(v)(B) of this section.

(A) All spillways must be either:

(1) Of non-erodible construction and designed to carry sustained flows; or

(2) Earth- or grass-lined and designed to carry short-term, infrequent flows at non-erosive velocities where sustained flows are not expected.

(B) The combined capacity of all spillways must adequately manage flow during and following the peak discharge from a:

(1) Probable maximum flood (PMF) for a high hazard potential CCR surface impoundment; or

(2) 1000-year flood for a significant hazard potential CCR surface impoundment; or

(3) 100-year flood for a low hazard potential CCR surface impoundment.

There are no spillways associated with the impoundment.

2.6 §257.73 (d)(1)(vi) - Hydraulic Structures

§257.73 (d)(1)(v): Hydraulic structures underlying the base of the CCR unit or passing through the dike of the CCR unit that maintain structural integrity and are free of significant deterioration, deformation, distortion, bedding deficiencies, sedimentation, and debris which may negatively affect the operation of the hydraulic structure.

Prior to decommissioning the impoundment system, the pond network discharged from Pond 4 through the South Embankment via one 24-inch diameter HDPE outflow pipe to the permitted NPDES outfall which was installed with a concrete headwall and endwall. The NPDES outfall was made inactive prior to the 2017 Annual Inspection (Ref. [11]). During the installation of the soil-bentonite wall, the portion of the outflow towards the interior of the site was removed and the outfall on the exterior of the site (between the Discharge Channel and the soil-bentonite wall) was kept active and connected to the dewatering system to discharge treated water to the Discharge Channel. The remaining portion of the NPDES outfall observed during the April 2022 inspection (Ref. [15]) appeared to maintain structural integrity. The NPDES outfall appeared to be free of significant deterioration, deformation, distortion, bedding deficiencies, sedimentation, and debris and HDR was not aware of deficiencies being observed in the past by MERG. The portion of the outfall that was underground was not inspected, however, there were no indications of settlement or distress of the South Embankment above the structure.

Previously, two HDPE outflow pipes (18-inch diameter) connected Pond 4 to the Discharge Channel to serve as emergency outflow pipes that extend through the South Embankment. Portions of these pipes between the soil-bentonite wall and the Discharge Channel have been grouted and portions of the pipes on the interior side of the soil-bentonite wall have been removed.

2.7 §257.73 (d)(1)(vii) - Downstream Slope Drawdown

\$257.73 (d)(1)(v): For CCR units with downstream slopes which can be inundated by the pool of an adjacent water body, such as a river, stream or lake, downstream slopes that maintain structural stability during low pool of the adjacent water body or sudden drawdown of the adjacent water body.

The West Embankment is adjacent to the North Branch of the Muskegon River and the South Embankment is adjacent to the Discharge Channel. The North Embankment is not adjacent to a water body. The Muskegon River and the Discharge Channel both flow into the Muskegon Lake and are hydraulically connected and are assumed to have the same water level elevations.

Ponds 0-8 are classified as a significant hazard (Ref. [10]) and 1000-year flood elevations are considered. The 1000-year flood elevation of Muskegon Lake was estimated by Golder (Ref. [9]) at El. 585.7 feet. The top of embankment elevation ranges from approximately El. 586 to El. 587 feet. The typical water elevation of Muskegon Lake is approximately El. 579.4 feet as estimated by nearby tide gauge data (Ref. [18]) and referenced in the 2016 Structural Stability and Safety Factor Assessment Report (Ref. [8]).

As presented in Section 3, rapid drawdown of the exterior (river side) slope is considered dropping from the 1,000-year flood elevation in Muskegon Lake (El. 585.7 feet) to the typical water elevation (El. 580 feet). A factor of safety (FS) of 1.91 was computed during the slope stability analyses for rapid drawdown as presented in Section 3. The computed factor of safety is compared against the minimum factor of safety of 1.1 required for rapid drawdown loading as per USACE Engineering Manual EM 1110-2-1902 guidelines (Ref. [20]).

Furthermore, the river side slopes of the South and West Embankments have adequate protection and did not reveal any sign of erosion or instability. Therefore, the downstream slope adjacent to Discharge Channel and the Muskegon River are considered to have adequate structural stability.

2.8 §257.73 (d)(2) - Structural Stability Deficiencies

§257.73 (d)(1)(v): The periodic assessment described in paragraph (d)(1) of this section must identify any structural stability deficiencies associated with the CCR unit in addition to recommending corrective measures. If a deficiency or a release is identified during the periodic assessment, the owner or operator unit must remedy the deficiency or release as soon as feasible and prepare documentation detailing the corrective measures taken.

Based on the previous weekly inspections performed by MERG and the inspection performed in April 2022 by HDR (Ref. [15]), no structural stability deficiencies were identified for the perimeter embankments.

3 Safety Factor Assessment - 40 CFR §257.73(e)

3.1 Stability Analysis Criteria

The CCR Final Rule does not stipulate the stability analysis methodology directly, although the minimum required factor of safety criteria were adopted from the U.S. Army Corp of Engineers (USACE) guidance manuals and USACE Engineering Manual EM 1110-2-1902 (Ref. [20]) is referred to by the CCR Rule as a benchmark in the dam engineering community for slope stability analyses. The methodologies in EM 1110-2-1902 were used in this assessment of the static load cases.

Safety Factor Assessment documentation requirements for existing CCR surface impoundments are detailed in 40 CFR §257.73: *Structural integrity criteria for existing CCR surface impoundments*. CCR Rule 40 CFR §257.73(e) states that:

§257.73 (e)(1): The owner or operator must conduct an initial and periodic safety factor assessments for each CCR unit and document whether the calculated factors of safety for each CCR unit achieve the minimum safety factors specified in paragraphs (e)(1)(i) through (iv) of this section for the critical cross section of the embankment. The critical cross section is the cross section anticipated to be the most susceptible of all cross sections to structural failure based on appropriate engineering considerations, including loading conditions. The safety factor assessments must be supported by appropriate engineering calculations.

(e)(1)(i) The calculated static factor of safety under the long-term, maximum storage pool loading condition must equal or exceed 1.50.

(e)(1)(ii) The calculated static factor of safety under the maximum surcharge pool loading condition must equal or exceed 1.40.

(e)(1)(iii) The calculated seismic factor of safety must equal or exceed 1.00.

(e)(1)(iv) For dikes constructed of soils that have susceptibility to liquefaction, the calculated liquefaction factor of safety must equal or exceed 1.20.

3.2 Methodology

The slope stability analysis was conducted using the GeoStudio (Version 11.2.0.22838) computer program Slope/W, which uses limit equilibrium methodologies to evaluate potential rotational and sliding block failure surfaces. For a given geometry and soil profile, the program evaluates potential failure surfaces and identifies the surface exhibiting the minimum factor of safety. We used Spencer's method which uses two-dimensional limit equilibrium analysis to determine the factor of safety for the slope. The computed factor of safety is the ratio of the forces resisting movement to the forces driving movement. The critical potential failure surface was obtained using the entry-exit search function. The factors of safety against sliding for both shallow and deep failure surfaces were determined. The shallow failure surfaces typically have lower factors of safety but are not typically considered an embankment safety concern since they are surficial in nature and not likely to result in the release of the impoundment. The "deep" failure surfaces were

defined for this study as failure surfaces that penetrate the phreatic surface or penetrate at least 1/3 of the crest width (approximately 5.4 feet) and, therefore, represent the most critical failure surfaces for the embankment stability.

3.3 Critical Cross Section Geometry

The critical section of the perimeter embankment was determined using 1) the May 2022 topographic survey provide by MERG which was performed after the completion of excavation, 2) the interpreted subsurface profile from the available borings at the site (discussed in Section 2.1), and 3) the interpreted phreatic surface based on observations at the site and from records of monitoring wells installed at the site.

One embankment section was considered critical based on geometry, described below, and located along the South Embankment as shown on Figure 4 with the section cut on Figure 5.

 The stability cross-section chosen for the Safety Factor Assessment is located along the South Embankment. This section was selected due to the geometry of the slope at this location compared to the other geometries observed from May 2022 topographic survey. Due to the pond side slopes that are present in this portion of the perimeter embankment, it was deemed more critical than the other portions of the perimeter embankment alignment.

Figure 4. Location of Stability Cross-Section

Figure 5. Stability Cross Section Geometry and Stratigraphy (phreatic surface for NWSE case)

3.4 Credible Load Cases

The loading conditions that were analyzed and the USEPA required minimum factors of safety are summarized in Table 3-1 below.

Loading Condition	Minimum Required Factor of Safety
Maximum Storage Pool (Normal)	1.50
Maximum Surcharge Pool Loading (1,000- year flood)	1.40
Seismic ¹	1.00
Post-earthquake - Liquefaction ²	1.20

Table 3-1. Loading Conditions and Minimum Required Factors of Safety

Notes:

- 1. A Peak Ground Acceleration (PGA) = 0.079g was adopted, based on a 2 percent probability of exceedance in 50 years (2475-year recurrence interval) (USGS 2018).
- 2. A liquefaction potential assessment was conducted and is discussed in Section 3.8. Results indicate that areas susceptible to liquefaction were not identified at the adopted level of shaking (0.079 g at 2475-year recurrence interval).

3.5 Pond Elevation and Phreatic Conditions

The phreatic surface for the stability model was developed based on current water level conditions of the Discharge Channel along with the excavated impoundment refilling with water. For the maximum storage pool condition, the water in the impoundment and the Discharge Channel was modeled to be at El. 580.0 feet, the approximate Normal Water Surface Elevation (NWSE) of the Discharge Channel (Ref. [8]).

The maximum pool surcharge condition was assumed to be at EI. 582.0 feet in accordance with the post-closure recommended pond levels established by HDR (Ref. [16]). An additional maximum pool surcharge condition was assumed to be the Muskegon Lake 1,000-year flood at EI. 585.7 feet as per Golder's B.C. Cobb Generating Facility Ponds 0-8, Inflow Design Flood Control System Plan (Ref. [9]).

3.6 Material Properties

The embankment stratigraphy is shown in Figure 5 and the material properties used for the slope stability analysis are presented in Table 3-2. The estimated material engineering properties were based on the classifications on the encountered subsurface soils, correlations with Standard Penetration Testing (SPT), and shear strength data obtained from the soil borings.

Metorial	Dry Unit	Saturated Unit	Effective Stress Parameters					
Material	(pcf)	Weight (pcf)	Drained Friction Angle, φ' (deg)	Drained Cohesion, c' (psf)				
Berm Material	90	120	31	0				
CCR	70	112	29	0				
Upper Native Sand	96	124	27	0				
Upper Native Sand with Organic Lenses	98	124	32	0				
Organic silt and clay with interbedded sand	74	109	27	0				
Lower Native Sand	98	124	31	0				
Basal Clay (Lacustrine)	74	109	28	150				
Soil Bentonite Wall (SBW)	120	120	31	0				

Table 3-2. Summary of Material Properties Used in Analysis

3.7 Vehicle Loading

The crest of the perimeter embankment is used as an access road around the impoundment, therefore, a vehicle load of 250 psf was used on the crest of the embankment in the stability analyses. The vehicle loading was applied to the loading conditions for the maximum pool storage, maximum pool surcharge (flood loading), and rapid drawdown cases. The vehicle load used in the analysis is based on American Association of State Highway and Transportation Officials (AASHTO) recommended loading for Equivalent Height of Soil for Vehicular Loading on Abutments for maintenance trucks (Ref. [1]).

3.8 Assessment of Liquefaction Potential

A previous liquefaction potential assessment (Ref. [8]) utilized the Cone Penetration Test (CPT) results and the 2008 United States Geological Survey (USGS) 2475-year return period (2% probability of occurrence in 50 years lifetime) earthquake and concluded that the embankment and foundation soils are not susceptible to seismically induced liquefaction.

The current study evaluates the liquefaction potential for the same earthquake return period of 2475 years to address the potential risks after the construction period. The probability of occurrence of the 2475-year earthquake is 2% during the typical lifetime of 50 years.

In the current study, Borings SB2000-1 to SB2000-6 (Ref. [19]) and the most recent 2014 and 2018 USGS published data were used for assessment of liquefaction potential. These borings were drilled along the Perimeter Embankment as shown previously in Figure 3. The borings logs are provided in Attachment 1.

A "triggering analysis" was used to assess the potential for liquefaction of the embankment and foundation soils using correlations with the SPT blow counts (N) data. Based on the observed stratigraphy and blow count data, the fill above is generally medium-dense, fine to coarse silty sand or sand with silt content. Below the water elevation, both fill and foundation material density reduce such that loose to very loose material can be identified in foundation material.

The foundation soils were screened for seismically-induced liquefaction susceptibility using methods recommended by the National Center for Earthquake Research (NCEER), which uses SPT data (Ref. [16]). For liquefaction triggering analysis, the corrected SPT blow counts and soil stresses were calculated for evaluation of cyclic shear strength and stress and minimum factor of safety for each boring from the three analyzed cases were obtained. The fine contents of SM and SC material is conservatively taken based on the lower bound of USCS fine contents (12%). Similarly, fine material is taken as silt (ML) with maximum 50% fine contents for this evaluation. The analysis is conducted for each six borings located at the crest of embankment as well as at the foundational very loose, saturated sand located at the toe of embankment which has no embankment overburden weight.

The site is located at very low seismic zone according to USGS data. Using the 2014 USGS online Unified Hazard Tool (Ref. [21]), the Peak Ground Acceleration (PGA), assuming a Site Class B/C boundary was obtained as 0.0331g. The earthquake magnitude is assumed 6.2, similar to the previous liquefaction potential assessment (Ref. [8]). Pages 1 through 5 of Attachment 2 present a summary of the 2014 Unified Hazard Tool data. The USGS Unified Hazard Tool has not been developed for 2018, however grid data is available in the form of tables and map. Based on the site location and the interpolated 2018 data that are available for 0.05-degree grids, the PGA was found same as the year 2014. It should be noted that the USGS PGA is defined at the rock outcrop surface and should be adjusted for overburden soil material. The presence of loose foundation material suggests that in the absence of data for upper 100 feet of foundation material, the largest amplification corresponding to Site Class E (ASCE 7-16) should be selected. As such a factor of 2.4 (ASCE 7-16) is applied to the rock PGA yielding to the liquefaction triggering analysis for earthquake level with PGA of 0.0794g and magnitude of 6.2.

The triggering analysis is based on the procedure proposed by Idriss and Boulanger (Ref. [17]). The triggering analysis requires that the raw SPT "N" values be corrected to a confining pressure of 1 ton per square foot and a drive energy of 60% efficiency (referred to as a $(N_1)_{60}$ value). The raw SPT "N" values (N_{raw}) presented on the boring logs were converted to $(N_1)_{60}$ values using the following equation:

$$(N1)_{60} = N_{RAW}C_NC_EC_BC_RC_S$$

Where:

C_N = Overburden Correction Factor = $(P_a/\sigma'_{vo})^{(0.784-0.0768[(N_1)_{60}^{0.5}])}$ ≤ 1.7

 C_E = Hammer Energy Correction factor = 60% efficient safety hammer = 1.0

 C_B = Borehole Diameter Correction Factor = 1.0

C_R = Rod Length Correction Factor

 $= 0.75 \quad (0-9.75 \text{ ft.})$ $= 0.8 \quad (9.75 \text{ to } 13 \text{ ft.})$ $= 0.85 \quad (13 \text{ to } 19.5 \text{ ft.})$ $= 0.95 \quad (19.5 \text{ to } 32 \text{ ft.})$ $= 1 \qquad (>32 \text{ ft.})$

C_S = Spoon Liner Correction

= 1.0 No liner was used

Additional corrections were then made to correct the $(N_1)_{60}$ value to an equivalent "clean sand" value for use in determining cyclic stress resistance (CRR), which was used for assessing triggering of liquefaction. The clean sand value, $(N_1)_{60cs}$, was determined based on the lowest possible fine contents from soil classification noted on the boring logs and using the method proposed by Idriss and Boulanger (Ref. [17]) and the following equation:

 $\Delta(N_1)_{60cs} = e^{(1.63+9.7/(PF+0.01)-(15.7/(PF+0.01))^2)}$

Where:

PF = Percent fines passing No. 200 sieve

Using Idriss and Boulanger (Ref. [16]), CRR was then calculated using the following equation:

$$\mathbf{CRR} = \mathbf{e}^{[(N_1)_{60cs}/14.1 + ((N_1)_{60cs}/126)^{A_2} - ((N_1)_{60cs}/23.6)^{A_3} + ((N_1)_{60cs}/25.4)^{A_4} - 2.8]}$$

The Cyclic Stress Ratio (CSR) was then calculated using the design earthquake. The CSR is defined as the ratio of the cyclic shear stress acting on a horizontal plane to the initial (pre-earthquake) effective or overburden stress. The PGA of 0.0794g was assumed in the analysis and the distribution of CSR through the foundation cross-section was determined. The CSR was then calculated using the following equation:

$$CSR = 0.65^{(a_{max}/g)*(\sigma_v/\sigma'_v)*r_d}$$

Where:

$$\begin{split} \mathbf{a}_{max}/\mathbf{g} &= 0.0794 \\ \mathbf{\sigma}_v &= \text{Total Overburden Stress} \\ \mathbf{\sigma'}_v &= \text{Effective Overburden Stress} \\ \mathbf{r}_d &= e^{(a(z) + B(z)M)} \\ \text{Where:} \\ &\qquad \mathbf{a(z)} &= -1.012 - 1.126^* \text{sin}((z/11.73) + 5.133) \\ &\qquad \mathbf{b(z)} &= 0.106 + 0.118^* \text{sin}((z/11.28) + 5.142) \end{split}$$

z = depth in meters

Once the CSR and CRR values were calculated, the factor of safety against triggering liquefaction was calculated as:

$$\textbf{FS} = CRR/CSR \ x \ MSF \ x \ K_{\sigma} \ x \ K_{\alpha}$$

Where:

MSF = magnitude scaling factor = $6.9^*e^{(-M/4)} - 0.058$, ≤ 1.8 **K**_{α} = correction factor for the effects of an initial static shear stress ratio = 1 **K**_{σ} = overburden correction factor = $1-C_{\sigma} \times Ln(\sigma'_v/P_a) \leq 1.1$ Where:

 $C_{\sigma} = 1/\{18.9 - 2.55 \text{ SQRT}((N_1)_{60cs}\} \le 0.3$

 P_a = Pressure at 1 atmosphere

The static shear strength in the liquefaction-susceptible material is small. Therefore, K_{α} was taken equal to one for the purpose of this analysis. If the FS is greater than 1.2, the soil is considered not susceptible to liquefaction. The calculated factor of safety against seismically-induced liquefaction is presented on Page 6 of Attachment 2 and was calculated to be greater than 1.2 for all borings. The analysis showed that with the embankment overburden weight of 10 to 20 feet, the potential liquefaction can be excluded.

Considering that the database for the existing procedures for low level of earthquake excitation is not as vast as the cases of large earthquakes and that the sand foundation near the toe of embankment is subjected to smaller vertical effective stress, a saturated cross section is analyzed further for the loose to very lose clean sand material with N<1 (identified in the box on Page 7 of Attachment 2). As shown on Page 6 of Attachment 2, the results provided a FS greater than 1.2 for the assumed amplified peak ground acceleration factor of 2.4.

Because neither the embankment, nor foundation soil, were considered liquefiable, a pseudo static seismic stability analysis was conducted assuming no strength loss for the embankment materials. The amplification factor that accounts for the quasi-elastic response of the embankment assumed failure surface is conservatively taken equal to the amplified peak acceleration of 0.0794g.

3.9 Stability Analysis Results and Conclusions

Analysis summary diagrams for each loading case are provided in Attachment 3. Table 3-3 below also summarizes the results of the analyses conducted for each loading case.

As presented in Table 3-3, the factors of safety against slope instability for deep failure surfaces capable of breaching the embankment satisfy the requirements of the CCR Final Rule under all loading conditions.

Case	River Water Surface Elevation (feet)	Pond Water Surface Elevation (feet)	Required Minimum Factor of Safety	Interior Slope/ Pond Side Factor of Safety	Attachment 3 Figure Location	Exterior Slope/ River Side Factor of Safety	Attachment 3 Figure Location
Maximum Pool Storage	580.0	580.0	1.50	1.53	Page 1	1.91	Page 2
1000-year Flood Elevation	585.7	582.0	1.40	1.52	Page 3	2.38	Page 4
Maximum Pool Surcharge	580.0	582.0	1.40	1.52	Page 5	1.91	Page 6
Pseudo- Static Seismic Stability	580.0	580.0	1.00	1.04	Page 7	1.41	Page 8
Rapid Drawdown	585.7 to 580	582 to 580	1.10			1.91	Page 9

Table 3-3. Summary of Stability Analyses Results and Factors of Safety

4 Certification

Based on the information provided to HDR by MERG, information available on MERG's CCR website, and HDR's visual observations and analyses, this Structural Stability Assessment and Safety Factor Assessment was conducted in accordance with the requirements of the USEPA 40 CFR Parts §257 and §261 Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule, April 17, 2015 (CCR Final Rule). Based on the information currently available, I certify to the best of my knowledge, information, and belief that this Structural Stability Assessment and Safety Factor Assessment meets the requirements of CCR Rule §257.73(d) and (e) in accordance with professional standards of care for similar work.

Byra B.

Bryce Burkett, P.E. Senior Geotechnical Project Manager

Greg Shafer, P.E. Geotechnical Engineer

5 References

- *Ref.* [1] American Association of State Highway and Transportation Officials (AASHTO), Load Resistant Factor Design (LFRD) Bridge Design Specifications, 2012.
- *Ref.* [2] AECOM. Inspection Report, B.C. Cobb Generating Facility, Ash Dike Risk Assessment, Muskegon, MI. December 8, 2009.
- *Ref.* [3] AECOM. B.C. Cobb Ash Disposal Area, 2012 Ash Dike Risk Assessment, Final Inspection Report. July 2012.
- *Ref.* [4] Consumers Energy Company. B.C. Cobb History of Construction Ponds 0-8. October 17. 2016.
- *Ref.* [5] Environmental Protection Agency, 40 CFR Parts §257 and §261; Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule, Washington D.C., April 2015.
- *Ref.* [6] Golder Associates, Inc. B.C. Cobb Plant Ash Pond Characterization, November 30, 2015.
- *Ref.* [7] Golder Associates, Inc. B.C. Cobb Generating Facility, Ponds 0-8, Annual RCRA CCR Surface Impoundment Inspection Report January 2016, January 15, 2016.
- *Ref.* [8] Golder Associates, Inc. B.C. Cobb Generating Facility, Ponds 0-8, Structural Stability and Safety Factor Assessment Report, October 14, 2016.
- *Ref.* [9] Golder Associates, Inc. B.C. Cobb Generating Facility, Ponds 0-8, Inflow Design Flood Control System Plan, October 14, 2016.
- *Ref.* [10] Golder Associates, Inc. B.C. Cobb Generating Facility, Ponds 0-8, Hazard Potential Classification Assessment Report, October 14, 2016.
- *Ref.* [11] Golder Associates, Inc. B.C. Cobb Generating Facility, Ponds 0-8, 2017 Annual Surface Impoundment Inspection Report, October 12, 2017.
- *Ref.* [12] Golder Associates, Inc. B.C. Cobb Generating Facility, Ponds 0-8, 2018 Annual Surface Impoundment Inspection Report, October 15, 2018.
- *Ref.* [13] Golder Associates, Inc. B.C. Cobb Generating Facility, Ponds 0-8 2019 Annual Surface Impoundment Inspection Report, October 10, 2019.
- *Ref.* [14] HDR Michigan, Inc. 2021 Annual Inspection Report, Former B.C. Cobb Power Plant, Ponds 0-8 and Bottom Ash Pond, May, 26, 2021.
- *Ref.* [15] HDR Michigan, Inc. 2022 Annual Inspection Report, Former B.C. Cobb Power Plant, Ponds 0-8 and Bottom Ash Pond, May, 26, 2022.
- *Ref.* [16] HDR Michigan, Inc. Memorandum: Post-Closure Pond Elevation Recommendations, BC Cobb CCR Removal, May, 27, 2022.
- *Ref.* [17] Idriss, I.M. and Boulanger, R.W., SPT-Based Liquefaction Triggering Procedures, Report No. UCD/CGM-10/02, Department of Civil and Environmental Engineering, University of California at Davis, December 2010
- *Ref.* [18] National Oceanic and Atmospheric Administration (NOAA). Holland, MI Station ID: 9087031, accessed April 2021, https://tidesandcurrents.noaa.gov/stationhome.html?id=9087031.
- *Ref.* [19] SME. Geotechnical Evaluation Report, B.C. Cobb Ash Basin Dewatering and Dredging, Muskegon, Michigan. SME Project No. 083742.01, August 27, 2020.
- *Ref.* [20] USACE. EM 1110-2-1902, Slope Stability, October 31, 2003.

Ref. [21] United States Geologic Survey, Unified Hazard Tool, accessed July 2022, <u>https://earthquake.usgs.gov/hazards/interactive/</u>

6 Attachments

- Attachment 1 Boring Logs
- Attachment 2 Liquefaction Analysis Figures and Results
- Attachment 3 Stability Analyses Results

ATTACHMENT 1 BORING LOGS

0	51	ME							BORIN	G SB2000-1 PAGE 1 OF 2	
PROJECT	NAME	BC Cobb Slurry Wall Des	ign			PR	OJECT NUMBER:	083742.01			
CLIENT:	PROJECT LOCATION. NOTH MUSNegoli, Michigan										
DRILLER:	MH	Stearns Drilling)	NO.: ATV (CME	20 55)		LC	GGED BY: RLS	Hollow-stern Aug	CHECKED BY:	АТВ	
F								DRY DENSITY	✓ HAND PENE		
ELEVATION (FEE DEPTH (FEET)	SYMBOLIC PROFILE	LATITUDE: 43.26127 N LONGITUDE: -86.246722 W SURFACE ELEVATION: 589.8 FT (NA' PROFILE DESCRIPTI	VD88) I ON	SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES)	BLOWS PER SIX INCHES	N-VALUE O	(pcf) ■ 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL 10 20 30 40	 UNC.COMP. UNC.COMP. VANE SHEAR (PK) X VANE SHEAR (REM) TRANSLAL (UU) SHEAR STRENGTH (KSF) 1 2 3 4 	REMARKS	
0- _ _		FILL- GRAVEL	588.	B SB1	18	11 8 8					
- 585 5 - -		FILL- COAL ASH- Frequ Layers- Black	lent Sand	SB2	18	5 8 10 27					
- - 		7.0 FILL- Fine to Medium S/ Occasional Wood Piece	582.1 AND- s- Brown-	3 SB3	18	35 33 4					
- 580 10 - -		Moist to Wet- Very Dens (SP)	578.1	SB4	18	5 3 1					
-		FILL- Fine to Medium S/ Silt- Gray- Wet- Very Lo (SP-SM) 13.5	AND with ose 576.:	SB5	15	1 1 1					
- 575 15 - -		FILL- SILT- Occasional L Layers- Gray- Wet- Very (ML) 16.0	Peat / Loose 573.i	SB6	18	000	R				
- - - - 570 20-		Fine to Medium SAND-	Gray- Wet-	SB7 SB8	18 18	3 4 1 0 0					
- - -		24.5	,	SB9	18	1 1 1 2					
- 565 25 - - -		Fine to Medium SILTY S Trace Organics- Dark G Very Loose (SM)	SAND- ray- Wet-	SB11	18	0 1 1 2					
- - <u>-</u> 56030-		29.5	560.3	8 SB12	18	2 5 5	↓: 10 ♀ <i>F</i>				
GROUN	DWATE	R & BACKFILL INFORMATION	NOTES: 1. Th	e indica	ted str	atifica	tion lines are approxi	mate. In situ, the tr	ransition between ma	terials may be gradual.	
∑ DURING ▼ AT END BACKFILL I	BORIN OF BC	DEPTH (FT) ELEV (FT) NG: 8.5 581.3 IRING: Note 3 DD: Note 2	2. Th 3. Ar to	e boreh accurat the use	ole wa e grou of grou	is back indwat ut.	dilled by tremie meth	od with bentonite a t was not obtained	nd cement grout to th after the completion	e ground surface. of drilling activities due	

PAGE 2 OF 2

PROJECT NAME: BC Cobb Slurry Wall Design

PROJECT NUMBER: 083742.01

PROJECT | OCATION: North Muskegon Michigan

CLIENT: HDR Michigan Inc

		і. г	ו אער	viicnię	jan nc.				FF			jon, Michigan	
ELEVATION (FEET)		8 DЕРТН (FEET)	SYMBOLIC PROFILE	LATITU LONG SURF/	JDE: 43.26127 N ITUDE: -86.246722 W ACE ELEVATION: 589.8 FT (NAVD88) PROFILE DESCRIPTION		SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES)	BLOWS PER SIX INCHES	N-VALUE O	DRY DENSITY (pcf) 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL 10 20 30 40	 ✓ HAND PENE. ☑ TORVANE SHEAR ○ UNC.COMP. ☑ VANE SHEAR (PK) × VANE SHEAR (REM) ◆ TRANAL (UU) SHEAR STRENGTH (KSF) 1 2 3 4 	REMARKS
-		-30		32.0	Fine to Medium SAND- Gray- Wet- Loose (SP) <i>(continued)</i>	557.8	SB13	18	1 1 1	2' Q			
-		-		34.0	Fine to Medium SILTY SAND- Dark Gray- Wet- Very Loose (SM)	555.8			1			9	
- 55	5	35 —		36.0	SILTY CLAY- Dark Brown- Very Soft (CL/ML)	553.8	SB14	18	2	Ř.	>>		Sample SB14 was too disturbed to perform a shear strength test.
-		-					SB15	18	2 7 13				
- - 55	60	- 40 —			Fine to Medium SAND- Brown and Gray- Wet- Medium Dense (SP)		SB16	18	4 6 11	I: I: 17: 9: 17: 17: 17: 17: 17: 17: 17: 17			
-		-		41.5		548.3	SB17	18	2	3/ 3/	36	0.75	
-		-			SILTY CLAY- Gray- Medium (CL/ML)		SB18	18	1		45	9 0.75	
54	5	-45-		45.0	END OF BORING AT 45.0 FEET.	544.8	GD 10	10	Ő				
- - - 54 -	0	- - 50 - -											
- - 53 -	5	- 55 — -											
_ 53 _ _	0	- 60 — - -											
- 52	25	- 65 - - - - -											

M SME		SM	E
--------------	--	----	---

PAGE 1 OF 2

PROJECT NAME: BC Cobb Slurry Wall Design

PROJECT NUMBER: 083742.01

CLIENT: HDR Michigan Inc.

BORING METHOD: Hollow-stem Augers

PROJECT LOCATION: North Muskegon, Michigan

DATE STARTED: 2/25/20 DRILLER: MH (Stearns Drilling)

RIG NO.: ATV (CME 55)

COMPLETED: 2/25/20

LOGGED BY: RLS

CHECKED BY: ATB

ELEVATION (FEET)	DEPTH (FEET)	SYMBOLIC	LATITUDE: 43.25792 N LONGITUDE: -86.247977 W SURFACE ELEVATION: 586.2 FT (NAVD88 PROFILE DESCRIPTION	3)	SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES)	BLOWS PER SIX INCHES		N-VA	LUE	E ○ 30 40	0R 90 01 01 01 01 01 01 01 01 01 01 01 01 01	Y DEN (pcf) 100 1 DISTUI TERB IMITS MC 20 3	ISITY 10 120 RE & ERG (%) LL 0 40	▼ ⊠ ● × ♥ S	HANE TOR UNC. VANE VANE TRIA S TREM	OPENE VANE S COMP. SHEAF SHEAF XIAL (UI HEAF NGTH 2 3	HEAR R (PK) R (REM) J) K (KSF)	REMARKS
-	0		1.0 FILL- GRAVEL	585.2							· · ·								
- 505 - -			FILL- Fine to Coarse SAND Silt and Gravel- Brown- Mois Medium Dense (SP-SM)	with st- 582.7	SB1	18	6 12 10			22	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		•	· · · · · · · · · · · · · · · · · · ·	•	
- <u>v</u>	5		FILL- Fine to Coarse SILTY Few Gravel- Brown and Gra Loose (SM)	SAND- y- Wet- 580.2	SB2	18	4 3 2	5 0 1	/		· · · · · · · · · · · · · · · · · · ·					•	· · · · · · · · · · · · · · · · · · ·		-
- 580 - -			FILL- Fine to Medium SAND Silt- Occasional Coal Fragm Gray and Brown- Wet- Loos (SP-SM)) with ients- e 577.7	SB3	15	6 3 2				· · · · · · · · · · · · · · · · · · ·					•			
-					SB4	7	2 0 0	Ψ			· · · · · · · · · · · · · · · · · · ·					:			
- - 575 -	10		FILL- Fine to Medium SAND Silt- Frequent Wood Pieces- Wet- Very Loose to Loose (S) with - Gray- SP-SM)	SB5	15	1 2 3				· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		•	· · · · · · · · · · · · · · · · · · ·		
-			13.5	572.7	0.00	10	1				· · · · · · · · · · · · · · · · · · ·					•		•	
-	15	-		·	SB6	12	2	Ŷ								<u>.</u>			_
- 570 - -			Fine to Medium SAND- Trac Organics- Occasional Wood Pieces- Gray- Wet- Very Loc (SP)	ce I ose	SB7	18	1 0 0		•		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·					
- - - 565	20				SB8	18	2 0 0				· · · · · · · · · · · · · · · · · · ·					· · · ·			-
-			22.0	564.2	SB9	18	1				· · · · · · · · · · · · · · · · · · ·						· · ·		
-	25		Fine SILTY SAND- Gray- W Very Loose (SM)	'et-	SB10	6	1 1 2	<u> </u>	•		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		•		•	-
- 560 -			Fine SILTY SAND- Trace Organices- Gray and Brown Very Loose (SM)	- Wet- 558.2	SB11	18	1 2 2		•		· · · · · · · · · · · · · · · · · · ·					•			
-	— 30		SILTY to CLAYEY Fine SAN Dark Brown- Moist- Very Loc (SC/SM)	ID- ose	SB12	14	1 2 1	 3 0			· · · · · · · · · · · · · · · · · · ·			>	62 >∳	•		•	
G	ROU	NDWAT	ER & BACKFILL INFORMATION	NOTES: 1. The	indica	ted str	atifica	ation	line:	s ar	e appro	ximate.	In si	tu, the	e trans	ition	betw	veen n	naterials may be gradual.
⊻ DU ¥ AT	ring End	g Bor Of B	DEPTH (FT) ELEV (FT) NG: 4.5 581.7 DRING: Note 3	2. The 3. An a to th	e boreho accurat ne use o	ole wa e grou of grou	us bac undwa ut.	kfille ater l	ed by level	trei mea	nie met asureme	hod wi ent was	th ber s not c	ntonite obtaine	and o ed afte	ceme er the	ent gr e corr	out to pletic	the ground surface. n of drilling activities due
BACK	FILL	METH	OD: Note 2																

		21	ME						BORIN	G SB2000-2
<u>.</u>			T I Jan							PAGE 2 OF 2
PROJ	ECTI NT: H	NAMI HDR	E: BC Cobb Slurry Wall Design Michigan Inc.			PF PF	ROJECT NUMBER: ROJECT LOCATION	083742.01 I: North Muskegon	. Michigan	
ELEVATION (FEET)	З ДЕРТН (FEET)	SYMBOLIC PROFILE	LATITUDE: 43.25792 N LONGITUDE: -86.247977 W SURFACE ELEVATION: 586.2 FT (NAVD88) PROFILE DESCRIPTION	SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES)	BLOWS PER SIX INCHES	N-VALUE O	DRY DENSITY (ppcf) ■ 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL 10 20 30 40	HAND PENE. I TORVANE SHEAR UNC.COMP. VANE SHEAR (PK) VANE SHEAR (PK) TRAXIAL (UU) SHEAR TRENGTH (KSF) 1 2 3 4	REMARKS
- 555	-30		31.0	555.2						
_	-		SILTY CLAY- Dark Brown and Gray- Very Soft (CL/ML) 33.5	SB13 552.7	18	1 1 2 0		60.25 >> 4		
- 550	35 - - -		Fine to Medium SAND- Light Brown- Wet- Loose (SP)	SB14 SB15	6	1 5 1 4 5				
-	40 -		Fine to Coarse SAND- Light 40.0 Brown- Wet- Loose (SP)	546.2 SB16	6	4 6 4		52 0.5		
- 545 - -	-		SILTY CLAY- Light Brown and Gray- Very Soft (CL/ML)	SB17 541.2 SB18	18	1 1 1 1 0 0		≫◆⊠ 58 0.5 ≫◆⊠		
- 540 - -			END OF BORING AT 45.0 FEET.							
- - 535 - -	50 - - - -									
- - 530 - -	55 - - - -									
- - 525 - -	- 60 - - - -									
- - 520 - -	65 - - - - - - 70-									

1 5	ME
-----	----

PAGE 1 OF 2

PROJECT NAME: BC Cobb Slurry Wall Design

PROJECT NUMBER: 083742.01

LOGGED BY: RLS

PROJECT LOCATION: North Muskegon, Michigan

CLIENT: HDR Michigan Inc.

DATE STARTED: 2/25/20 DRILLER: MH (Stearns Drilling) COMPLETED: 2/25/20 BORING METHOD: Hollow-stem Augers

RIG NO.: ATV (CME 55)

CHECKED BY: ATB

ELEVATION (FEET)	, DЕРТН (FEET)	SYMBOLIC PROFILE	LATITUDE: 43.256708 N LONGITUDE: -86.243934 W SURFACE ELEVATION: 589.2 FT (NAVD88) PROFILE DESCRIPTION	SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES)	BLOWS PER SIX INCHES	N-VALUE - O	DRY DENSITY (pcf) ■ 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL ■ 10 20 30 40	 ✓ HAND PENE. ☑ TORVANE SHEAR ○ UNC.COMP. ☑ VANE SHEAR (PK) ✓ VANE SHEAR (PK) ♦ TRIAXIAL (UU) SHEAR STRENGTH (KSF) 1 2 3 4 	REMARKS
_	0-		1.0 FILL- GRAVEL 588.2	2						
-			FILL- Fine SILTY SAND- Frequent Roots- Dark Gray- Moist- Loose (SM)	SB1	18	3 2 3	5 			
- 585	5 -		4.5 584.7 FILL- Fine to Coarse SAND with	SB2	18	1 3	4			
-	5	\bigotimes	Silt- Dark Brown and Black- Moist- 6.0 Loose (SP-SM) 583.2	2						
			FILL- Fine to Coarse SAND with Silt and Gravel- Frequent Wood Pieces- Reddish Brown- Wet- 8.5 Loose (SP-SM) 580.7	SB3	18	4 4 4				
- 580	10 -		FILL- Fine to Coarse SILTY SAND with Gravel- Gray- Wet- Very Loose (SM)	SB4	18	6 2 1				
-			FILL- Fine SILTY SAND- Trace Organics- Gray- Wet- Very Loose (SM)	SB5	18	1 1 1				
- 575	15 -		13.5 575.7	SB6	18	1 1 1	0			
-			Fine SAND- Trace Silt- Gray- Wet- Very Loose (SP) 18.5 570.7	SB7	18	1 1 1				
- 570 -	20 -	-	Fine to Coarse SAND- Trace Silt- Trace Gravel- Gray- Wet- Loose (SP) 568.2	SB8	18	1 2 3				
-		-	Fine to Medium SAND- Trace Organics- Brownish Gray- Wet-	SB9	12	1 2 3				
- 565	25 -		Loose to Very Loose (SP)	SB10	12	1	2 0			
-			26.0 563.2 Fine SILTY SAND with Wood- 27.0 (SM) (SM) Fine to Medium SAND, Gray, Wet	2 SB11	18	1 2 3	5 0 1			
			29.0 Loose (SP) 560.2	SB12	18	1				
-	-30-					3	<u> Y = </u>			
GROUNDWATER & BACKFILL INFORMATION NOTES: 1. The indicated stratification lines are approximate. In situ, the transition between materials may be gradual. DEPTH (FT) ELEV (FT) ✓ DURING BORING: 8.5 580.7 ✓ AT END OF BORING: Note 3										

1		51	ME						BORIN	G SB2000-3 PAGE 2 OF 2
PROJ	ЕСТ		E: BC Cobb Slurry Wall Design			PR	ROJECT NUMBER:	083742.01	ron Michigon	
ELEVATION (FEET)	З DEPTH (FEET)	PROFILE	LATITUDE: 43.256708 N LONGITUDE: -86.243934 W SURFACE ELEVATION: 589.2 FT (NAVD88) PROFILE DESCRIPTION	SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES)	BLOWS PER SIX INCHES	N-VALUE - O	DRY DENSITY (pcf) ■ 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL 10 20 30 40	♥ HAND PENE. ☑ TORVANE SHEAR ○ UNC.COMP. ■ VANE SHEAR (PK) > VANE SHEAR (REM) ◆ TRIAXIAL (UU) SHEAR STRENGTH (KSF) 1 2 3 4	REMARKS
			Organics- Gray- Wet- Loose (SM) 31.0	558.2		1				
- - - 555 -	35 -		Fine SILTY SAND- Gray- Wet- Loose (SM) 36.0	SB13 SB14 553.2	18 18	1 2 2 1 2 4				
- - - 550	40-		Fine SILTY SAND- Occasional Roots- Gray- Moist- Loose (SM)	SB15 SB16	18 18	1 3 2 1 2 2				
-	40		42.0	547.2 SB17	18	0 1 1				
- 545 -	45 -		Fine to Medium SAND- Gray- Wet- Loose (SP) 46.0 SILTY CLAY- Grayish Brown- Very	SB18 543.2 SB19	18 18	0 2 3 2 2 2 4		32		
- 540			Stiff (CL/ML) 48.5 SILTY CLAY- Brownish Gray- Stiff 50.0 (CL/ML)	540.7 SB20 539.2	18	1 2 2		28:		
- - - 535 - - -	55 -	-								
- 530 - -	60 -	-								
- - 525 - -	65 -	-								
- 520	-70-	-								

	SN	4F								BORING	G SB2000-4	
	- 1 -	(1) here									PAGE 1 OF 2	
	NAME:	BC Cobb Slurry Wa ichigan Inc	ll Design				PF	ROJECT NUMBE	R: 083742.01	oon Michigan		
DATE STA	ARTED:	2/26/20	COMPLET	ED: 2/26	/20		в		: Hollow-stem Aug	gers		
DRILLER:	MH (S	stearns Drilling)	RIG NO.:	ATV (CME	E 55) LOGGED BY: RLS CHECKED BY: ATB							
ELEVATION (FEET) DEPTH (FEET)	SYMBOLIC PROFILE 07 T	ATITUDE: 43.257754 N ONGITUDE: -86.245089 W URFACE ELEVATION: 593.6 PROFILE DE X	FT (NAVD88) SCRIPTION		SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES)	BLOWS PER SIX INCHES	N-VALUE - O	DRY DENSITY (pcf) - ■ 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL ■ 10 20 30 40	 ♥ HAND PENE. ⊠ TORVANE SHEAR ○ UNC.COMP. ■ VANE SHEAR (PK) × VANE SHEAR (REM) ◆ TRIAXIAL (UU) SHEAR STRENGTH (KSF) 1 2 3 4 	REMARKS	
-		.0 FILL- GRAVEL		592.6	;							
- - - 590 - 5- -					SB1 SB2	18	8 7 5 3 3 3 3					
- - 585 - ⊻ - 10-			Occasional		SB3 SB4	18 18	2 1 1 1 1					
- - - 580 - - 15-		FILL- CUAL ASH- Sand Layers- Blad	occasional sk		SB5 SB6	18	1 1 0 1 0 0					
- - - 575 - - - 20 -		1.0		572.6	SB7 SB8	18 18	1 0 1 0 0					
- - - 570 - - 25-		Fine to Medium S Loose (SP) 6.0	AND- Gray- V	Vet- 567.6	SB9 SB10	18 18	2 6 3 1 3 3					
- - 565 		Fine to Medium S and Organics- Gra (SP)	AND- Trace S ay- Wet- Loos	Silt se	SB11 SB12	18 18	1 3 4 2 3 1					
GROUN	GROUNDWATER & BACKFILL INFORMATION NOTES: 1. The indicated stratification lines are approximate. In situ, the transition between materials may be gradual. 2. The borehole was backfilled by tremie method with bentonite and cement grout to the ground surface. 3. An accurate groundwater level measurement was not obtained after the completion of drilling activities due to the use of grout. BACKFILL METHOD: Note 3											

PAGE 2 OF 2

PROJECT NAME: BC Cobb Slurry Wall Design

PROJECT NUMBER: 083742.01

CLIENT:	HDR Michigan Inc.			PR	OJECT LOCATION	N: North Muskeg	gon, Michigan	
ELEVATION (FEET) SDEPTH (FEET)	LATITUDE: 43.257754 N UNGITUDE: -86.245089 W SURFACE ELEVATION: 593.6 FT (NAVD88) PROFILE DESCRIPTION	SAMPLE TYPE/NO. INTERVAL RECOVERY	LENGTH (INCHES)	BLOWS PER SIX INCHES	N-VALUE O 10 20 30 40	DRY DENSITY (pcf) ■ 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL 10 20 30 40	 ✓ HAND PENE. ☑ TORVANE SHEAR ○ UNC.COMP. ☑ VANE SHEAR (PK) × VANE SHEAR (REM) ◆ TRAXIA (UU) > STRENGTH (KSF) 1 2 3 	REMARKS
-	Fine to Medium SAND- Trace Silt and Organics- Gray- Wet- Loose (SP) <i>(continued)</i> 33.0 560.6	SB13 1	18	4 3 3				
- 560	Fine SILTY SAND- Dark Gray- Wet 34.0 (SM) 559.6	SB14 1	18	1 2 3	5			
-	Fine to Medium SAND- Trace Silt- Brown- Wet- Loose (SP)	SB15 1	18	2 3 3				
- 555 - 40 ·	Sandy SILT- Dark Brown and Gray- Moist- Very Loose (ML)	SB16 1	18	1 1 2			1	
- - - 550	Fine to Medium SAND- Grayish Brown- Wet- Loose (SP)	SB17 1	18	1 2 3				
45-	45.0 548.6	SB18 1	18	0 0 6	6 O			
-	END OF BORING AT 45.0 FEET.							
-	-							
- 545	-							
50 -	-							
-	-							
- 540	-							
55-	-							
-	-							
ŀ								
- 535	-							
60	-							
-	1							
- 530	-							
65-	-							
	-							
-								
- 525	-							
t					: : : :	: : : :	: : : :	

-									BORIN	G SB2000-5
PROJECT	NAM	BC Cobb Slurry Wall Desig	ın			PF		083742 01		
CLIENT:	HDR	Michigan, Inc.	,			PF		North Muskeg	jon, MI	
DATE STA	RTED): 5/14/20 COM	PLETED: 5/14/	20		в	ORING METHOD:	4-1/4" Hollow-ste	m Auger	
DRILLER:	DK (Stearns Drilling) RIG I	IO.: CME 55 L	СХ		LC	GGED BY: JF		CHECKED BY:	AJE
N (FEET) EET)				E/NO.	CHES)			DRY DENSITY (pcf) 90 100 110 120	 ✓ HAND PENE. ☑ TORVANE SHEAR ○ UNC.COMP. 	
ELEVATIO	SYMBOLIC PROFILE	LATITUDE: 43.260001 N LONGITUDE: -86.24798 W SURFACE ELEVATION: 587 FT (NAVD) PROFILE DESCRIPTIC	38) M	SAMPLE TYP INTERVAL	RECOVERY LENGTH (INC	BLOWS PER SIX INCHES	N-VALUE O	ATTERBERG LIMITS (%) PL MC LL 10 20 30 40	 VANE SHEAR (PK) X VANE SHEAR (REM) TRIAXIAL (UU) SHEAR STRENGTH (KSF) 1 2	REMARKS
- · ·		FILL- Fly Ash- Trace San Moist	d- Black-	SB1 3ST2	18 11	2 2 3	5 O	×	2	
- ⊻ 5- - 580 - 		5.1	301.9	SB3	18	1 1 1 2	2	20		[–] Organic odor
- 10 - 		Fine SAND- Occasional (Light Brown and Brown- Wet- Very Loose to Loose	Drganics- Moist to (SP)	SB4 SB5	12	2 2 1 2 2		30		
- 15 - - 570 -		15.5 Fine SAND with Organics Wood Fragments- Light B Wet- Loose (SP)	571.5 and Brown-	SB7	8	1 2 4 2 3 2		77	9	
- 20 - - 565 -		20.5 Fine SAND- Trace Orgar Brown- Wet- Very Loose 23.0 PEAT- Black (PT)	566.5 ics- Light (SP) 564.6 564.0	SB8 SB9	14	3 2 3 2 1		19		
- 25 - - 25 - 		Fine SAND- Trace Orgar Wood Fragments- Brown Very Loose to Loose (SP	ic and - Wet-	SB10 SB11	9 8	1 2 1 3 2 2		24 23 *		
- · ·				3ST12	24					
GROUN ⊈ DURING	DWATE	DEPTH (FT) ELEV (FT) NG: 5.1 581.9	NOTES: 1. Th	e indica	ted str	ratifica	tion lines are approx	imate. In situ, the tr	ansition between ma	aterials may be gradual.
CAVE-IN OF BACKFILL N	CAVE-IN OF BOREHOLE AT: 9.0 578.0 BACKFILL METHOD: Auger Cuttings									

٦

Г

								BORING	G SB2000-5
									PAGE 2 OF 2
PROJ	ECT		E: BC Cobb Slurry Wall Design			PF	ROJECT NUMBER	8: 083742.01	
	11:		Michigan, Inc.						
ELEVATION (FEE	рертн (FEET)	SYMBOLIC	LATITUDE: 43.260001 N LONGITUDE: -86.24798 W SURFACE ELEVATION: 587 FT (NAVD88) PROFILE DESCRIPTION 30.5	Sample Type/NO.	RECOVERY LENGTH (INCHES)	BLOWS PER SIX INCHES	N-VALUE O 10 20 30 40 1 1 1 1 1	(pcf) - ■ Imate Periet 90 100 100 110 MOISTURE & ATTERBERG LIMITS (%) UNC.COMP. PL MC PL MC Imate Periet STRENGTH (KSF) 10 20 30 10 20 30	REMARKS
- 555 -			ORGANIC CLAY- Trace Shells- Dark Brown- Soft (OL)	SB13	18	1 1 2 2	3 ~ 		
- - - 550	35 -		34.5 Fine SAND- Light Brown- Wet-	552.5 SB14 SB15	18	4 10 10 18 23		223	
-	40 -		40.5	SB16	18	4 6 5			
- 545 - -	45 -		LEAN CLAY with Organics- Trace Shells- Gray- Very Soft (CL)	SB17 3ST18	18	01	ď		
- 540			47.0 LEAN CLAY with Organics and Peat- Trace Sand- Gray- Very Soft 49.0 (CL)	540.0 SB19	18	1 1 1 3	2	22	
- - 535	50-	-	CLAYEY SAND- Brown- Wet- <u>50.0</u> Medium Dense (SC) END OF BORING AT 50.0 FEET.	537.0 SB20	18	6 8			
-	55 -	-							
- 530 - -		-							
- - - 525 -	60 -	-							
	65 -	-							
		-							

-								BORING	G SB2000-6		
	NAM	E: BC Cobb Slurn/Wall Design			DE		• 083742 01		FAGE I OF 2		
CLIENT:	HDR	Michigan, Inc.			PF	PROJECT LOCATION: North Muskegon, MI					
DATE STA	RTE	COMPLETED: 5/15/20	15/20	20 BORING METHOD: 4-1/4" Hollow-stem Auger							
DRILLER:	DK	Stearns Drilling) RIG NO.: CME 55	LCX		LC	DGGED BY: JF		CHECKED BY:	AJE		
EVATION (FEET) PTH (FEET)	MBOLIC DFILE	LATITUDE: 43.2579 N LONGITUDE: -86.246529 W	IPLE TYPE/NO. ERVAL	COVERY GTH (INCHES)	WS PER INCHES	N-VALUE O	DRY DENSITY (pcf) - ■ 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL	 ✓ HAND PENE. ☑ TORVANE SHEAR ○ UNC.COMP. ☑ VANE SHEAR (PK) × VANE SHEAR (REM) ◆ TRIAXIAL (UU) SHEAR 			
	NS NS NS NS NS NS NS NS NS NS NS NS NS N	PROFILE DESCRIPTION	SAM	LEN	BLO	10 20 30 40	10 20 30 40	STRENGTH (KSF)	REMARKS		
- 585 		FILL- Fly Ash with Sand- Black-	SB1	18 0	333	6 O	5				
- <u>¥</u> - 580 . 		Damp to Wet	3ST3 SB4	24 18	1 1	2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6			
- 10 - 		11.5 57 PEAT with Sand- Dark Brown- Soft 13.0 (PT) 57	5.5 SB5 4.0	12	1 1 2		28	20			
- 15 - 		Fine SAND- Trace Organics and Wood Fragments- Light Brown- Wet- Loose to Very Loose (SP)	SB6 SB7	12 8	1 3 3 1 1 2		26				
- 20 - - 20 - 		19.3 56 PEAT- Dark Brown- Very Soft (PT) 23.0 56	7.7 SB8 3ST9 4.0	14 24	1 1 1		21				
- 25 - - 560		ORGANIC CLAY with Sand- Brown- Soft (OL)	SB10 SB11	18 18	1 2 2 1 2		5 • •	2			
		28.0 55 ORGANIC CLAY- Trace Shells- Dark Brown- Very Soft to Soft (OL)	9.0 SB12	18	2 2 2	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 4 \\ 0 \end{array}$	47				
GROUN	DWAT BORI OF BO	DEPTH (FT) ELEV (FT) NG: 6.0 581.0 DRING: 4.0 583.0	The indica	ted str	ratifica	ation lines are approx	ximate. In situ, the tr	ansition between mat	terials may be gradual.		
CAVE-IN OF BACKFILL N	CAVE-IN OF BOREHOLE AT: 13.0 574.0 BACKFILL METHOD: Auger Cuttings										

٦

Г

										BORIN	G SB2000-6
											PAGE 2 OF 2
PROJ		AME	E: BC Cobb Slurry Wall Design				P	ROJECT NUMBER	: 083742.01		
CLIEN	IT: ⊦	IDR I	Michigan, Inc.	1		I	P		DN: North Muske	gon, MI	
ELEVATION (FEET)	8 DEPTH (FEET)	PROFILE	LATITUDE: 43.2579 N LONGITUDE: -86 246529 W SURFACE ELEVATION: 587 FT (NAVD88) PROFILE DESCRIPTION		SAMPLE ITPE/NU. INTERVAL	RECOVERY LENGTH (INCHES)	BLOWS PER SIX INCHES	N-VALUE O	DRY DENSITY (pcf) - ■ 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL 10 20 30 40	 ♥ HAND PENE. ⊠ TORVANE SHEAR ● UNC.COMP. ■ VANE SHEAR (PK) ★ VANE SHEAR (REM) ♦ TRIAXIAL (UU) SHEAR STRENGTH (KSF) 1 2 3 4 	REMARKS
- - 555 -	-		ORGANIC CLAY- Trace Shells- Dark Brown- Very Soft to Soft (OL) (continued)	552 5 SE	313	18	1 0 1 2 2		22	66 · · · · · · · · · · · · · · · · · ·	
- - 550 -	35 -		Fine to Medium SAND- Light Brown- Wet- Medium Dense (SP)	SE	315 316	14	6 9 11 6 10 8		17 • 19 •		
- - - 545 -	40		40.5 LEAN CLAY with Organics- Trace	546.5 SE	317	18	0 0 1	Ŭ	39	0.4	
- - - 540 -	45 -		48.0 Fine SAND- Clay Seams- Trace	3S 	T18 319	24 18	0000	φ	35	0.4	
-			Organics- Light Brown- Wet- Very 50.0 Loose (SP) END OF BORING AT 50.0 FEET.	537.0 SE	320	18	0	0			
- 535 - -	-										
- - 530 -	55										
- 525	60 - - - -										
- 520	65										

ATTACHMENT 2 LIQUEFACTION ANALYSIS FIGURES AND RESULTS

U.S. Geological Survey - Earthquake Hazards Program

Unified Hazard Tool

Please do not use this tool to obtain ground motion parameter values for the design code reference documents covered by the <u>U.S. Seismic Design Maps web tools</u> (e.g., the International Building Code and the ASCE 7 or 41 Standard). The values returned by the two applications are not identical.

∧ Input	
Edition	Spectral Period
Dynamic: Conterminous U.S. 2014 (u	Peak Ground Acceleration
Latitude	Time Horizon
Decimal degrees	Return period in years
43.259	2475
Longitude	
Decimal degrees, negative values for western longitudes	
-86.246	
Site Class	
760 m/s (B/C boundary)	

Deaggregation

Component

Summary statistics for, Deaggregation: Total

Deaggregation targets	Recovered targets
Return period: 2475 yrs Exceedance rate: 0.0004040404 yr ⁻¹ PGA ground motion: 0.033091268 g	Return period: 2503.8898 yrs Exceedance rate: 0.00039937859 yr ⁻¹
Totals	Mean (over all sources)
Binned: 100 %	m: 5.83
Residual: 0 % Trace: 2.73 %	r: 171.69 km ε₀: 0.26 σ
Mode (largest m-r bin) m: 4.9 r: 30.09 km ε.: -0.75 σ	Mode (largest m-r-ε₀ bin) m: 7.77 r: 795.49 km ε₀: 1.73 σ
Discretization	Epsilon keys
r: min = 0.0, max = 1000.0, Δ = 20.0 km	ε0: [-∞2.5)
m: min = 4.4, max = 9.4, Δ = 0.2	ε1: [-2.52.0)
ε: min = -3.0, max = 3.0, Δ = 0.5 σ	ε2: [-2.01.5)
	ε3: [-1.51.0)
	ε4: [-1.00.5)
	ε5: [-0.50.0)
	ε6: [0.00.5)
	ε7: [0.51.0)
	ε8: [1.0 1.5]
	ε9: [1.52.0)
	ε10: [2.02.5]
	ε11: [2.5+∞]

Deaggregation Contributors

Source Set Ly Source	Туре	r	m	ε ₀	lon	lat	az	%
USGS Fixed Smoothing Zone 1 (opt)	Grid							27.81
PointSourceFinite: -86.246, 43.641		42.43	5.26	-0.58	86.246°W	43.641°N	0.00	1.04
PointSourceFinite: -86.246, 43.506		27.72	5.17	-1.27	86.246°W	43.506°N	0.00	1.02
SSCn Fixed Smoothing Zone 1 (opt)	Grid							27.48
PointSourceFinite: -86.246, 43.641		42.43	5.26	-0.58	86.246°W	43.641°N	0.00	1.04
PointSourceFinite: -86.246, 43.506		27.72	5.17	-1.27	86.246°W	43.506°N	0.00	1.02
USGS Adaptive Smoothing Zone 1 (opt)	Grid							17.41
SSCn Adaptive Smoothing Zone 1 (opt)	Grid							17.26
SSCn New Madrid	Cluster							3.98
NMFS RLME 1		783.94	7.70	1.97	89.288°W	36.995°N	201.37	1.17
Wabash Valley	Grid							2.25
USGS New Madrid 500-year	Cluster							1.20

Attachment 2, Page 6

ATTACHMENT 3 STABILITY ANALYSES RESULTS

Attachment 3, Page 3

Attachment 3, Page 5

Attachment 3, Page 6

Attachment 3, Page 9